
Assignment 1: Vending machines in mCRL2

José Proença

Arquitectura e Cálculo – 2015/2016

To do: Write a report using LaTeX including the answers to the exercises below.

To submit: The report in PDF by email.

Deadline: 31 March 2016 @ 14h (Thursday)

Modelling a vending machine

Exercise 1. We specify a very primitive vending machine and a user in mCRL2 below. After inserting
a coin of 50 cents, the user can push the button for an apple.

act
ins50, optA, acc50, putA, coin, ready ;

proc
User = ins50 . optA . User ;
Mach = acc50 . putA . Mach ;

init
allow(

{ coin, ready },
comm(
{ ins50|acc50 → coin, optA|putA → ready },
User || Mach

)) ;

The specification is split into three sections: act, a declaration of actions of 6 actions, proc, the
definition of 2 processes, and init, the initialisation of the system.

1.1. Produce the labelled transition system (LTS) of this specification using (1) mcrl22lps to linearise
the system and (2) lps2lts to produce the final LTS.

1.2. Visualise the previous LTS with ltsgraph. Show a screenshot of the LTS (make sure it is
understandable).

1.3. Specify and visualise the LTS of a similar specification, obtained by omitting the restrictions allow
and comm. How many states do you expect (and count), and why?

Exercise 2. Next, we add a chocolate bar to the assortment of the vending machine. A chocolate
bar costs 1 euro, an apple 50 cents. The machine will now accept coins of 50 cents and 1 euro. The
scenarios allowed are (i) insertion of 50 cents and purchasing an apple, (ii) insertion of 50 cent twice or
1 euro once and purchasing a chocolate bar. Additionally, after insertion of money, the user can push
the change button, after which the inserted money is returned.

1

2.1. Extend the following mCRL2 specification to describe the vending machine sketched above, and
save the resulting specification as vm2.mcrl2. The actions that are involved, and a possible spec-
ification of the Mach process have been given. The machine is required to perform a prod action for
administration purposes.

act
ins50, ins100, acc50, acc100, coin50, coin100, ret50, ret100 ;
optA, optC, chg50, chg100, putA, putC, prod,
readyA, readyC, out50, out100 ;

proc
User =

%% 1 %%

Mach =
acc50.(putA.prod + acc50.(putC.prod + ret100) + ret50).Mach +
acc100.(putA.prod.ret50 + putC.prod + ret100).Mach ;

init
%% 2 %%

2.2. Linearise your specification, build the LTS, and visualise the result LTS using mcrl22lps, lps2lts,
and ltsgraph. Show a screenshot of the obtained graph.

Exercise 3. The same vending machine is now specified below using data parameters to capture
different coins and products.

sort Coin = struct c50ct | c1eur;
Product = struct Apple | Chocolate;

act
ins, acc, coin, ret, chg, out: Coin;
opt, put, ready: Product;
prod;

proc
User =

ins(c50ct).(opt(Apple) + ins(c50ct).(opt(Chocolate) + chg(c1eur))
+ chg(c50ct)).User +

ins(c1eur).(opt(Apple).chg(c50ct) + opt(Chocolate) + chg(c1eur)).User ;

Mach =
acc(c50ct).(put(Apple).prod + acc(c50ct).(put(Chocolate).prod + ret(c1eur))

+ ret(c50ct)).Mach +
acc(c1eur).(put(Apple).prod.ret(c50ct) + put(Chocolate).prod + ret(c1eur)).Mach ;

init
allow(

{ coin, ready, out, prod },
comm(
{ ins|acc → coin,

2

chg|ret → out,
opt|put → ready },

User || Mach
)) ;

3.1. Modify this specification such that all coins of denomination 2eur, 1eur, 50ct, and 25ct can be
inserted. The machine accumulates upto a total of 2 eur. If sufficient credit, an apple or chocolate bar
is supplied after selection. Money is returned after pressing the change button. Show this updated
specification.

3.2. Visualise and include a screenshot of the new machine.

LTS Equivalence

Exercise 4. Recall the vm2.mcrl2 specification from Exercise 2 of a system performing coin50 and
coin100 actions as well as so-called τ -steps.

4.1. Build a specification vm2-taus.mcrl2 that is the same as vm2.mcrl2 after hiding the actions readyA,
readyC, out50, out100, prod. Show this specification.

4.2. Using the ltscompare tool, compare your model under branching bisimilarity with the LTS of the
system vm2-taus with the LTS of the system vm2 after hiding the actions readyA, readyC, out50, out100,
prod. For that use the following command.

$ ltscompare --equivalence=branching-bisim \
--tau=out50,out100,readyA,readyC,prod vm2.lts vm2-taus.lts

4.3. Using ltsconvert, minimise the LTS for vm2.mcrl2 with respect to branching bisimulation after
hiding the same actions as before (using the hide operation in mcrl2). Visualise and include a screen-
shot of the minimised LTS. You can compare the minimised LTSs and vm2-taus.lts visually using
ltsgraph.

Verification of the vending machines

Exercise 5. Recall the simple LTS from Exercise 1.

5.1. What does the property “[true*]<ready>true” mean? Does it hold?

5.2. What does the property “[true*.ready.!coin]false” mean? Does it hold? Note: !coin represents
the complement of coin, i.e., any action that is not coin.

5.3. Write a property that expresses that, at any moment, it is possible to reach a state where a coin
can be inserted.

5.4. Use the mCRL2 toolset to verify if the 3 properties above hold (from Exercises 5.1, 5.2, and 5.3).
This involves 2 steps for each property:

1. use “lps2pbes <lps-file> -f <file-with-formula> <output.pbes>” to produce a system of boolean
equations, and

2. use “pbes2bool <output.pbes>” to evaluate if these equations have a solution.

5.5. Adapt the 3 properties (if needed) to the vending machine specified in Exercise 2 and verify them
using the mCRL2 toolset. Show these properties and the result of the verification.

3

