Time-critical reactive systems (verification)

José Proença

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

May 2016
Traces

Definition

A timed trace over a timed LTS is a (finite or infinite) sequence \((t_1, a_1), (t_2, a_2), \ldots\) in \(\mathcal{R}_0^+ \times \text{Act}\) such that there exists a path

\[
(\langle l_0, \eta_0 \rangle \xrightarrow{d_1} \langle l_0, \eta_1 \rangle \xrightarrow{a_1} \langle l_1, \eta_2 \rangle \xrightarrow{d_2} \langle l_1, \eta_3 \rangle \xrightarrow{a_2} \ldots)
\]

such that

\[
t_i = t_{i-1} + d_i
\]

with \(t_0 = 0\) and, for all clock \(x\), \(\eta_0 x = 0\).

Intuitively, each \(t_i\) is an absolute time value acting as a time-stamp.

Warning

All results from now on are given over an arbitrary timed LTS; they naturally apply to \(T(ta)\) for any timed automata \(ta\).
Traces

Write possible traces

Diagram of a lamp system with states:
- **off**
- **low**
- **bright**

Transitions:
- From **off** to **low** if \(y \geq 5 \)
- From **low** to **off** if \(y \lt 5 \)
- From **low** to **bright** if \(y \geq 5 \)
- From **bright** to **off** if \(y \lt 5 \)

Questions:
- \(press? \)
- \(y := 0 \)
Traces

Given a **timed trace** tc, the corresponding **untimed trace** is $(\pi_2)^\omega tc$.

Definition

- two states s_1 and s_2 of a timed LTS are **timed-language equivalent** if the set of finite timed traces of s_1 and s_2 coincide;
- ... similar definition for **untimed-language equivalent** ...

Example

The systems are not **timed-language equivalent**.
Traces

Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^\omega tc$.

Definition
- two states s_1 and s_2 of a timed LTS are timed-language equivalent if the set of finite timed traces of s_1 and s_2 coincide;
- ... similar definition for untimed-language equivalent ...

Example

\[
\begin{array}{c}
\text{\begin{tabular}{c}
$x:=0$\\
$x \leq 1$
\end{tabular}} \\
t
\end{array}
\quad
\begin{array}{c}
\text{\begin{tabular}{c}
$x:=0$\\
$x = 1$
\end{tabular}} \\
t
\end{array}
\]

are not timed-language equivalent

\[\langle (0, t) \rangle\] is not a trace of the TLTS generated by the second system.
Bisimulation

Timed bisimulation (between states of timed LTS)

A relation \(R \) is a \textit{timed simulation} iff whenever \(s_1 R s_2 \), for any action \(a \) and delay \(d \),

\[
\begin{align*}
 s_1 \xrightarrow{a} s'_1 & \Rightarrow \text{there is a transition } s_2 \xrightarrow{a} s'_2 \wedge s'_1 R s'_2 \\
 s_1 \xrightarrow{d} s'_1 & \Rightarrow \text{there is a transition } s_2 \xrightarrow{d} s'_2 \wedge s'_1 R s'_2
\end{align*}
\]

And a \textit{timed bisimulation} if its converse is also a timed simulation.
Bisimulation

Example

W1 bisimilar to Z1?

\[
\langle\langle W_1, \{ x \mapsto d \} \rangle, \langle Z_1, \{ x \mapsto d \} \rangle \rangle \in R
\]

where

\[
R = \{ \langle\langle W_1, \{ x \mapsto d \} \rangle, \langle Z_1, \{ x \mapsto d \} \rangle \rangle | d \in R^+ \} \cup \{ \langle\langle W_2, \{ x \mapsto d+1 \} \rangle, \langle Z_2, \{ x \mapsto d \} \rangle \rangle | d \in R^+ \} \cup \{ \langle\langle W_3, \{ x \mapsto d \} \rangle, \langle Z_3, \{ x \mapsto e \} \rangle \rangle | d, e \in R^+ \} \}
\]
Bisimulation

Example

W1 bisimilar to Z1?

\[\langle \langle W1, \{ x \mapsto 0 \} \rangle, \langle Z1, \{ x \mapsto 0 \} \rangle \rangle \in R \]

where

\[R = \{ \langle \langle W1, \{ x \mapsto d \} \rangle, \langle Z1, \{ x \mapsto d \} \rangle \rangle \mid d \in \mathbb{R}_0^+ \} \cup \]
\[\{ \langle \langle W2, \{ x \mapsto d + 1 \} \rangle, \langle Z2, \{ x \mapsto d \} \rangle \rangle \mid d \in \mathbb{R}_0^+ \} \cup \]
\[\{ \langle \langle W3, \{ x \mapsto d \} \rangle, \langle Z3, \{ x \mapsto e \} \rangle \rangle \mid d, e \in \mathbb{R}_0^+ \} \]
Untimed Bisimulation

A relation R is an **untimed simulation** iff whenever $s_1 R s_2$, for any action a and delay t,

$$s_1 \xrightarrow{a} s'_1 \Rightarrow \text{there is a transition } s_2 \xrightarrow{a} s'_2 \land s'_1 R s'_2$$

$$s_1 \xrightarrow{d} s'_1 \Rightarrow \text{there is a transition } s_2 \xrightarrow{d'} s'_2 \land s'_1 R s'_2$$

And it is an **untimed bisimulation** if its converse is also an untimed simulation.

Alternatively, it can be defined over a modified LTS in which all delays are abstracted on a unique, special transition labelled by ϵ.
Untimed Bisimulation

Example

W1 bisimilar to Z1?

W1
- a
- x := 0
- x <= 1

W2
- x := 0

Z1
- a
- x := 0
- x <= 2

Z2
- x := 0
- x <= 2
Untimed Bisimulation

Example

\[\langle\langle W_1, \{x \mapsto 0\} \rangle, \langle Z_1, \{x \mapsto 0\} \rangle \rangle \in R\]

where

\[R = \{\langle\langle W_1, \{x \mapsto d\} \rangle, \langle Z_1, \{x \mapsto d'\} \rangle \rangle | 0 \leq d \leq 1, 0 \leq d' \leq 2\} \cup \{\langle\langle W_1, \{x \mapsto d\} \rangle, \langle Z_1, \{x \mapsto d'\} \rangle \rangle | d > 1, d' > 2\} \cup \{\langle\langle W_2, \{x \mapsto d\} \rangle, \langle Z_2, \{x \mapsto d'\} \rangle \rangle | d, d' \in \mathcal{R}_0^+\}\]
Properties: expression and satisfaction

The satisfaction problem

Given a timed automata, ta, and a property, ϕ, show that

$$T(ta) \models \phi$$

- in which logic language shall ϕ be specified?
- how is \models defined?
Properties: expression and satisfaction

The satisfaction problem

Given a timed automata, ta, and a property, ϕ, show that

$$T(ta) \models \phi$$

- in which logic language shall ϕ be specified?
- how is \models defined?
Expressing properties: Uppaal

Uppaal variant of Ctl

- **state formulae**: describes individual states in $\mathcal{T}(ta)$
- **path formulae**: describes properties of paths in $\mathcal{T}(ta)$
Expressing properties: Uppaal

State formulae

Any expression which can be evaluated to a boolean value for a state (typically involving the clock constraints used for guards and invariants and similar constraints over integer variables):

\[x \geq 8, \ i = 8 \text{ and } x < 2, \ldots \]

Additionally,

- **ta.ℓ** which tests current location: \((ℓ, η) \models ta.ℓ\) provided \((ℓ, η)\) is a state in \(T(ta)\)

- **deadlock**: \((ℓ, η) \models \forall d \in \mathbb{R}_0^+. \text{there is no transition from } \langle ℓ, η + d \rangle\)
Expressing properties: Uppaal

Path formulae

\[\Pi ::= A \Box \psi \mid A \Diamond \psi \mid E \Box \psi \mid E \Diamond \psi \mid \Phi \rightsquigarrow \psi \]

\[\psi ::= ta.\ell \mid g_c \mid g_d \mid \text{not } \psi \mid \psi \text{ or } \psi \mid \psi \text{ and } \psi \mid \psi \text{ imply } \psi \]

where

- \(A, E \) quantify (universally and existentially, resp.) over paths
- \(\Box, \Diamond \) quantify (universally and existentially, resp.) over states in a path

also notice that

\[\Phi \rightsquigarrow \psi \overset{\text{abv}}{=} A \Box (\Phi \Rightarrow A \Diamond \psi) \]
Expressing properties: Uppaal

\(A\Box \varphi \) and \(A\Diamond \varphi \)

\(E\Box \varphi \) and \(E\Diamond \varphi \)
Expressing properties: Uppaal

Example

If a message is sent, it will eventually be received –
send(m) \rightsquigarrow received(m)
Reachability properties

\[E \Diamond \phi \]

Is there a path starting at the initial state, such that a state formula \(\phi \) is eventually satisfied?

- Often used to perform sanity checks on a model:
 - is it possible for a sender to send a message?
 - can a message possibly be received?
 - ...

- Do not by themselves guarantee the correctness of the protocol (i.e. that any message is eventually delivered), but they validate the basic behavior of the model.
Safety properties

$A \Box \phi$ and $E \Box \phi$

Something bad will never happen
or something bad will possibly never happen

Examples

- In a nuclear power plant the temperature of the core is always (invariantly) under a certain threshold.
- In a game a safe state is one in which we can still win, ie, will possibly not loose.

In Uppaal these properties are formulated positively: something good is invariantly true.
Liveness properties

Given a property ϕ, the liveness properties are:

- $A \Diamond \phi$ and $\phi \Rightarrow \psi$

Something good will *eventually happen*

or if *something* happens, then *something else* will eventually happen!

Examples

- When pressing the on button, then eventually the television should turn on.

- In a communication protocol, any message that has been sent should eventually be received.
The train gate example

- $E<> \text{Train}(0).\text{Cross}$
 (Train 0 can reach the cross)

- $E<> \text{Train}(0).\text{Cross}$ and $\text{Train}(1).\text{Stop}$
 (Train 0 can be crossing bridge while Train 1 is waiting to cross)

- $E<> \text{Train}(0).\text{Cross}$ and
 $(\forall (i:\text{id-t}) i \neq 0 \implies \text{Train}(i).\text{Stop})$
 (Train 0 can cross bridge while the other trains are waiting to cross)
The train gate example

- $A[]$ Gate.list[N] == 0
 There can never be N elements in the queue

- $A[]$ forall (i:id-t) forall (j:id-t) Train(i).Cross && Train(j).Cross imply i == j
 There is never more than one train crossing the bridge

- Train(1).Appr -> Train(1).Cross
 Whenever a train approaches the bridge, it will eventually cross

- $A[]$ not deadlock
 The system is deadlock-free
Mutual exclusion

Properties

- **mutual exclusion**: no two processes are in their critical sections at the same time
- **deadlock freedom**: if some process is trying to access its critical section, then eventually some process (not necessarily the same) will be in its critical section; similarly for exiting the critical section
Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for \(n \) processes to be controlled, \(O(n) \) read-write registers and \(O(n) \) operations.

• This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two \textit{timed} algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol
Mutual exclusion

The Problem

- Dijkstra’s original asynchronous algorithm (1965) requires, for \(n \) processes to be controlled, \(\mathcal{O}(n) \) read-write registers and \(\mathcal{O}(n) \) operations.

- This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two \textit{timed} algorithms:

- Fisher’s protocol (included in the Uppaal distribution)
- Lamport’s protocol
Fisher’s algorithm

The algorithm

repeat
 repeat
 await \(id = 0\)
 \(id := i\)
 delay(\(k\))
 until \(id = i\)
 (critical section)
 \(id := 0\)
forever
Fisher’s algorithm

Comments

- One shared read/write register (the variable id)
- Behaviour depends crucially on the value for k — the time delay
- Constant k should be larger than the longest time that a process may take to perform a step while trying to get access to its critical section
- This choice guarantees that whenever process i finds $id = i$ on testing the loop guard it can enter safely its critical section: all other processes are out of the loop or with their index in id overwritten by i.
Fisher’s algorithm in Uppaal

- Each process uses a local clock x to guarantee that the upper bound between its successive steps, while trying to access the critical section, is k (cf. invariant in state req).

- Invariant in state req establishes k as such an upper bound.

- Guard in transition from $wait$ to cs ensures the correct delay before entering the critical section.
Fisher’s algorithm in Uppaal

Properties

- % P(1) requests access \rightarrow it will eventually wait
 - P(1).req \rightarrow P(1).wait
- % the algorithm is deadlock-free
 - A[] not deadlock
- % mutual exclusion invariant
 - A[] forall (i:int[1,6]) forall (j:int[1,6])
 - P(i).cs && P(j).cs imply i == j

- The algorithm is **deadlock-free**
- It ensures mutual exclusion if the correct timing constraints.
- ... but it is critically sensible to small violations of such constraints: for example, replacing $x > k$ by $x \geq k$ in the transition leading to cs compromises both **mutual exclusion** and **liveness**.
The algorithm

\[
\text{start : } a := i \\
\quad \text{if } b \neq 0 \text{ then goto start} \\
\quad b := i \\
\quad \text{if } a \neq i \text{ then delay}(k) \\
\quad \quad \text{else if } b \neq i \text{ then goto start} \\
\quad (\text{critical section}) \\
\quad b := 0
\]
Lamport’s algorithm

Comments

• Two shared read/write registers (variables \(a\) and \(b\))

• Avoids forced waiting when no other processes are requiring access to their critical sections
Lamport’s algorithm in Uppaal
Lamport’s algorithm

Model time constants:

\(k \) — time delay

\(k\text{vr} \) — max bound for register access

\(k\text{cs} \) — max bound for permanence in critical section

Typically

\[k \geq k\text{vr} + k\text{cs} \]

Experiments

<table>
<thead>
<tr>
<th></th>
<th>(k)</th>
<th>(k\text{vr})</th>
<th>(k\text{cs})</th>
<th>verified?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual Exclusion</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Mutual Exclusion</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Mutual Exclusion</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>No deadlock</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>No deadlock</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>No deadlock</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>