
Architectural design: the
coordination perspective

José Proença
HASLab - INESC TEC & UM

Arquitectura e Cálculo 2015-16

:FO

Software architecture
for reactive systems

There is no general-purpose, universally tailored, approach
to architectural design of complex and reactive systems

+NTROE6DF�E+((FRFNT�MOEFLS�(OR�RFBDT+VF�SYSTFMS
E+SD6SS�TIF+R�BRDI+TFDT6RBL�EFS+HN

�N�TI+S�DO6RSF�

W+TI��RFBSONBCLF��TOOL�S6PPORT�(OR�MOEFLL+NH�BNE�BNBLYS+S

Models of Concurrency

Interaction appears as an implicit side-effect;
Makes coordination of interaction more difficult to

Specify
Verify
Manipulate
Reuse

Traditional models are action-based
Petri nets
Work flow / Data flow
Process algebra / calculi
Actor models / Agents
…

Interaction with
process algebra

act
g, r, b, d : String % synchronisation points

print, genG, genR;

proc
B = b(t) . print(t) . d("done") . B
G = g(k) . genG(t) . b(t) . d(j) . r(k) . G
R = r(k) . genR(t) . b(t) . d(j) . g(k) . R

init
G || R || B || g("token")

�OEFL�DONSTR6DTFE�CY�
DOMPOS+NH�BDT+ONS�+NTO�
MORF�DOMPLF9�BDT+ONS

>IFRF�
+S�TIF�

���1:-
�����,

Interaction with Object
Oriented Software

The semantics of method invocation is heavy and non-trivial:
• The caller must know the callee and the method.
• The callee must (pretend) to interpret the message.
• The caller suspends while the callee (pretends to) perform

the method and resumes when the callee returns a result.

• In OO the architecture is implicit:
source code exposes class hierarchies but not the run-time
interaction and configuration

• Objects are wired at a very low level and the description of
the wiring patterns is distributed among them

Implicit interaction
Interaction (protocol) is implicit in action-based models of concurrency

Interaction is a by-product of processes executing their actions
Action a of process A collides with action b of process B
Interaction is the specific (timed) sequence of such collisions in a run
Interaction protocol is the (timed) sequence of the intended collisions

in such a sequence.

�OW�DBN�TIF�+NTFNEFE�
BNE�TIF�DO+ND+EFNTBL�CF�
E+((FRFNT+BTFE,

�OW�DBN�TIF�SF26FNDF�O(�
+NTFNEFE�DOLL+S+ONS��TIF�
+NTFRBDT+ON�PROTODOL��DBN�CF�

�BN+P6LBTFE,�
�FR+(+FE,�
0FC6HHFE,�
:F6SFE�,

Interaction with
components

Shift from class inheritance to object composition
Avoid interference between inheritance and encapsulation
and pave the way to a development methodology based
on third-party assembly of components

.LBD,�CO9�
DOMP6TBT+ON�

6N+TS

�BNVBS�TO�
EROP�TIFM

�ONNFDT+ONS�
V+B�W+RFS

Move from an action-based to an interaction-based
model of concurrency

Component
coordination in Reo

Wr

Wr

Rdconnector

• Exogenous coordination

• Compositional (channel
based)

• Synchronous (atomic)

• Coordination is
constrained interaction
!�FTFR�>FHNFR��)���A

Component
coordination in Reo

Wr

Wr

Rdconnector

• Exogenous coordination

• Compositional (channel
based)

• Synchronous (atomic)

• Coordination is
constrained interaction

Endogenous: provide primitives that must be
incorporated within a computation for its coordination
Exogenous: ensure that the conceptual separation
between computation and coordination is suitably
respected

!�FTFR�>FHNFR��)���A

Discrete atomic steps

Wr

Wr

Rdconnector

Ready to write!

No data yet...

Ready to receive!

Discrete atomic steps

Wr

Wr

Rdconnector

Go!
Take data.

Wait.

Reo: Channel composition

Reo

✦ Language for compositional construction of interaction protocols
✦ Interaction is the only first-class concept in Reo:

✦ Explicit constructs representing interaction
✦ Composition operators over interaction constructs

✦ Protocols manifest as a connectors
✦ In its graphical syntax, connectors are graphs

✦ Data items flow through channels represented as edges
✦ Boundary nodes permit (components to perform) I/O

operations
✦ Formal semantics (various formalisms - shown later)
✦ Tool support: draw, animate, verify, compile

Composition as
coordination

• interacting components need not know each other. (cf
traditionally communication is targeted, making the
sender semantically dependent on (the scheme used to
identify) the receiver)

• communication becomes anonymous: components
exchange identifiable sequences of passive messages
with the environment only

• therefore third parties can coordinate interactions
between senders and receivers of their own choice

Components

• loci of computation

• are kept independent of each other and of their
environment

• Components communicate with the environment
only through read and write operations on the
connector ends (or ports), possibly according some
behavioural interface description

Connectors
• act as interaction controllers: the glue code that makes

components interact

• i.e., they coordinate the activities of individual components to
ensure their proper interaction with one another to form a
coherent system that behaves according to its requirements

• have no relevant role in the computation carried out by the
overall system: they are component-independent and agnostic
wrt the underlying computation model

• provide systems-independent interaction protocols
(whereas components provide systems-specific functionality)

• … built compositionally.

• but traditionally, glue code is the most rigid, component specific,
special purpose software in component based systems!

Reo connectors
• Source end: through which data enters

the connector
• Sink end: through which data comes out

of the connector

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Reo connectors
Characterized by

• a number of ends and a constraint which defines an
interaction protocol through these ends

Ends

• source end: through which data enters the connector

• sink end: through which data comes out of the connector

Examples (channels)

14 component connectors

2.2 Reo

Reo has been proposed by F. Arbab [6, 7] as an exogenous coordination language
based on a calculus of channel composition to construct component connectors.
Each connector in Reo represents an interaction protocol that constrains the com-
ponents that connect to its ports. Reo supports synchronous, asynchronous, and
context-dependent dataflow behaviour.

2.2.1 Channels

The simplest connectors of degree 2 in Reo are channels. Reo does not define any
specific channels. Users can define the channel types and their dataflow behaviour.
A channel in Reo is a medium of communication with exactly two ends, and a con-
straint that defines its interaction protocol through these ends. Reo recognises two
types of channel ends: source ends, through which data enter channels, and sink
ends through which data come out of channels. That is all Reo defines about chan-
nels. Users define the different channel types and their dataflow behaviour in terms
of specific constraints that relate their data exchanges through their respective ends.
These constraints define, for example, whether a channel is synchronous or asyn-
chronous, whether or not it has a buffer, whether or not its buffer is bounded,
whether or not it retains the order of the data items it receives, whether it loses
some of its data, or generates fresh data items, etc. Reo does not even require a
channel to have a source and a sink. It is perfectly content with a channel that has
two sources or two sinks, with whatever behaviour a user may define for it. Reo
supports two I/O operations to perform requests—write and take—one requests an
input from a sink end, and the other requests an output from a source end, respect-
ively1.

Sync SyncDrain SyncSpout LossySync

AsyncDrain AsyncSpout FIFO1 FIFO1(x)

Table 1: Reo channel types.

Table 1 contains the Reo channel types we use throughout this thesis. We provide
their formal semantics in the following chapters. At this stage, we give an informal

1 The terms source and sink designate the senses of the ends of a channel from the point of view of the
channel itself. Obviously, the sense of a channel end must be reversed from the point of a user of a
channel, i. e., a component that performs an I/O operation on a channel end. Thus, a component writes
to the source end of a channel and takes from the sink end of a channel.

19BMPLFS�

Composing Reo
connectors

join
source ends

with
sink ends

ONF�TO�O
NF

Nodes: syntactic sugar for
mergers and replicators

a b b c⨝

a
b

c=

MFRHFR RFPL+DBTO
R

SO6RDF�NOEFS

S+N,�NOEFS M+9FE�NOEFS

Reo eclipse toolset

6PEBTF�S+TF�

HFT�1DL+PSF
http://reo.project.cwi.nl/update

