
Architectural design: the
coordination perspective

José Proença
HASLab - INESC TEC & UM

Arquitectura e Cálculo 2015-16

�(P

Reo semantics

Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo

Reo semantics
• Coalgebraic models

• Timed data streams
• Record streams

• Coloring models
• Two colors
• Three colors
• Tile models

• Other models
• Process algebra
• Constraints
• Petri nets & intuitionistic logic
• Unifying theories of programming
• Structural operational semantics

• Operational models
• Constraint automata
• Variants of constraint automata

• Port automata
• Timed Probabilistic
• Continuous-time
• Quantitative
• Resource-sensitive timed
• Transactional

• Context-sensitive automata
• Büchi automata
• Reo automata
• Intentional automata
• Action constraint automata
• Behavioral automata

228
S
.-S

.
T
.Q

.
Jon

gm
an

s,
F
.
A
rb
ab

CA

PA

LCA

CASM TCA

SPCA

PCA

CCA

QCA

RSTCA

TNCA

ACA

Constr.

mCRL2

2CM 3CM

Tiles

GA

BA

TDS

RS

BAR

ABAR

IA

QIA SGA

SOSZSN

ITLL

UTP

2cm : Coloring models with two colors [28, 29, 33] pa : Port automata [45]

3cm : Coloring models with three colors [28, 29, 33] pca : Probabilistic ca [15]

abar : Augmented bar [39, 40] qca : Quantitative ca [12, 53]

aca : Action ca [46] qia : Quantitative ia [13]

ba : Behavioral automata [61] rs : Record streams [38, 40]

bar : Büchi automata of records [38, 40] rstca : Resource-sensitive timed ca [51]

ca : Constraint automata [10, 17] sga : Stochastic ga [56, 57]

casm : ca with state memory [60] sos : Structural operational semantics [58]

cca : Continuous-time ca [18] spca : Simple pca [15]

Constr. : Propositional constraints [30, 31, 32] tca : Timed ca [8, 9]

ga : Guarded automata [20, 21] tds : Timed data streams [4, 5, 14, 62]

ia : Intentional automata [33] Tiles : Tile models [11]

itll : Intuitionistic temporal linear logic [27] tnca : Transactional ca [54]

lca : Labeled ca [44] utp : Unifying theories of programming [55, 52]

mCRL2 : Process algebra [47, 48, 49] zsn : Zero-safe nets [27]

F
igu

re
7:

K
n
ow

n
relation

s
b
etw

een
sem

an
tic

form
alism

s.
A
n
arrow

from
form

alism
X

to
form

alism
Y

m
ean

s:
if
on

e
can

m
o
d
el

th
e
b
eh

av
ior

of
a

con
n
ector

C
onn

in
X
,
on

e
can

m
od

el
th
e
b
eh
avior

of
C
onn

in
Y

w
ith

ou
t
loss

of
in
form

ation
.

Outline

Formalism Synchr. Data Context Partial

Connector
Colouring CC2 - CC3 -

Automata Port
Automata

Constraint
Automata - -

Constraints ✓ ✓ ✓ ✓

Outline

Formalism Synchr. Data Context Partial

Connector
Colouring CC2 - CC3 PCC

Automata Port
Automata

Constraint
Automata - -

Constraints ✓ ✓ ✓ ✓

Intuitive & visual

Compilation & verification

Runtime / scalability

1 2 3 4

Wr

Rd

Rd

Reo Connector Colouring
Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency

Behaviour?

N(SI(S+�FC6C�HMP9T�HSPN�PO(�PH�6+(�
TPVSE(�(OFT�6P�6+(�T,OL�(OF

MPTT;�T;OE+�(,6+(S�FC6C�HMP9T�HSPN�6+(�
TPVSE(�6P�6+(�T,OL�(OF�����,6�,T�MPT6

�����)+�FC6C�HMP9T�HSPN�6+(�TPVSE(�(OF�
6P�6+(�DVHH(S��D(EPN,OI�C������VMM�)

• �����VMM�)+�FC6C�HMP9T�HSPN�6+(�DVHH(S�
6P�6+(�T,OL�DVHH(S��D(EPN,OI�C������)

Colourings to describe
synchronous dataflow

a

b

c d
e

a

b

c

a

b

c

a

b

c

c d

c d

c d

d
e

d
e

Colouring composition
a

b

c d
e

a

b

c d
e

a

b

c d
e

a

b

c d
e

a

b

c d
e

EPMPVST�NC6E+�,O�OPF(T

Colouring semantics (CC2)

• Colouring: End → {Flow, NoFlow}

• Colouring table: Set(Colouring)

• Composition = matching colours

• More visual (intuitive)

• Used for generating animations

http://reo.project.cwi.nl/welcome.swf

Colouring semantics (CC2)

• Colouring: End → {Flow, NoFlow}

• Colouring table: Set(Colouring)

• Composition = matching colours

• More visual (intuitive)

• Used for generating animations

CT1 ./ CT2 =

{cl1 ./ cl2 | cl1 2 CT1, cl2 2 CT2, cl1 _ cl2}

cl1 _ cl2 = 8e 2 dom(cl1) \ dom(cl2) · cl1(e) = cl2(e)

cl1 ./ cl2 = cl1 [cl2

http://reo.project.cwi.nl/welcome.swf

Exercise: compose
colouring tables

Wr

Rd

Rd
Wr

Rd

Wr

Rd

Rd

Reo Connector Colouring
Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency

PAUSE
�PO�E

POO(
E6PS�

EPMPV
S,OI�

Port and Constraint Automata

Christian Koehler and Dave Clarke. Decomposing Port Automata. 2009

qM , qL, qe qM , qL, qf

acd, bcd

ac, bc

e, ace, bce

ac, bc

Christel Baier, Marjan Sirjani, Farhad Arbab, Jan Rutten. Modeling Component Connectors in Reo by
Constraint Automata. 2004

Connector behaviour
(statefull)

• Dataflow behaviour is discrete in time: it can be observed and
snapshots taken at a pace fast enough to obtain (at least) a
snapshot as often as the configuration of the connector
changes

• At each time unit the connector performs an evaluation step:
it evaluates its configuration and according to its interaction
constraints changes to another (possibly different)
configuration

• A connector can fire multiple ports in the same evaluation step

Port Automata

qe qf

a

b

a b

(YCN2M(T+ qL

ab

a

a b

A = (Q,N ,!,Q0)

Q set of states

N a set of ports N
! ✓ Q⇥ 2N ⇥Q a transition relation

Q0 ✓ Q a set of initial states

6SCOT,6,POT�NVT6�+CW(�C�OPO�(N26;�T(6�PH�2PS6T!

Composing steps

qM , qL, qe qM , qL, qf

acd, bcd

ac, bc

e, ace, bce

ac, bc

qM

ac

bc
�⇥

qL

cd

c
�⇥

qe qf

d

e

a

b

c d
e

Composing steps

ac ./ cd ./ d = acd
ac ./ c ./ d = ?

qM

ac

bc
�⇥

qL

cd

c
�⇥

qe qf

d

e

a

b

c d
e

Composition - formallyport a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

• b1

◦
x

• b2

• b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦ and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn} a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

port a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

• b1

◦
x

• b2

• b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦ and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn} a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

Formalize and compose

port a. The XOR(a, b, c) synchronizes a with either b or c.
Finally, the FIFO(a, b) automaton models a unary buffer.

Now we introduce the two main operations on port au-
tomata. These are product and hiding.

Definition 2. The product of two port automata A1 =
(Q1,N1,→1,Q0,1) and A2 = (Q2,N2,→2,Q0,2) is defined by

A1 ◃▹ A2 = (Q1 ×Q2,N1 ∪N2,→,Q0,1 ×Q0,2)

where → is defined by the rule

q1
N1−→1 p1 q2

N2−→1 p2 N1 ∩N2 = N2 ∩N1

⟨q1, q2⟩
N1∪N2−→ ⟨p1, p2⟩

and the following and its symmetric rule

q1
N1−→1 p1 N1 ∩N2 = ∅
⟨q1, q2⟩

N1−→ ⟨p1, q2⟩

The first rule models the synchronous product of two transi-
tions. The second and the third rule are for an interleaving
of actions. Note that, for applying any of the rules, every
port shared by the two automata must be either enabled or
disabled in both transitions. The following definition intro-
duces hiding of ports.

Definition 3. Let A = (Q,N ,→,Q0) be a port automa-
ton and M ⊆ N . The port automaton A\M is defined by
A\M = (Q,N\M, !!",Q0) where !!" is given by:

q
N\M!!" p ⇔ q

N−→ p

The hiding operation simply removes all occurrences of a set
of ports. The following example shows how these two oper-
ations can be used to build more complex port automata.

“ !"#$%&'(q0!!

a
""!"#$%&'(q1

b

◃▹ !"#$%&'(q2!!

a,c

$$

a,d

%%

”
\ {a} =)*+,-./0q02!!

c
&&

d

'')*+,-./0q12

b

((

When using predefined primitives, we will instead just write:
`
FIFO(a, b) ◃▹ XOR(a, c, d)

´
\ {a}

To reason about the constructions we further need a no-
tion of behavioral equivalence. For this purpose, we define
a notion of bisimulation between two port automata.

Definition 4. Given port automata A1 = (Q1,N ,→1,Q0,1)
and A2 = (Q2,N ,→2,Q0,2) a bisimulation is a relation
∼⊆ Q1 ×Q2 with the following properties:

1. Let q1 ∈ Q0,1 and q1
N−→1 p1. Then there exists a

q2 ∈ Q0,2 with q2
N−→2 p2 and p1 ∼ p2, and vice versa.

2. If q1 ∼ q2 then for all transitions q1
N−→1 p1 there

exists q2
N−→2 p2 such that p1 ∼ p2, and vice versa.

Note that this notion of bisimulation is late, in the sense
that the initial states are not part of the relation. If there
is a bisimulation that relates two port automata we denote
this by A1 ∼ A2. Every bisimulation is a congruence, i.e.,
it is compatible with the product and hiding operation:

Theorem 1. Compatibility with join and hiding:

1. A1 ∼ A2 and A′
1 ∼ A′

2 ⇒ (A1 ◃▹ A′
1) ∼ (A2 ◃▹ A′

2).

2. A1 ∼ A2 ⇒ (A1\B) ∼ (A2\B).

Proof. For showing 1. we observe that the relation
˙
q1, q

′
1

¸
∼

˙
q2, q

′
2

¸
⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the product automata. For 2., any
bisimulation is still valid after a hiding of ports.

In the following section we show how port automata can
be decomposed. We use the term decomposition in the sense
that a port automaton can be written as a finite product of
other automata with the optional hiding of some ports.

3. DECOMPOSITION
In this section we show how port automata can be de-

composed. First, we show that stateless port automata, i.e.,
port automata with just one state, can be decomposed into a
product of XORs. Second, we extend the result to arbitrary
port automata by including either the FIFO or a so-called
Flip-Flop primitive.

Being stateless port automata, the Lossy and Sync in
Figure 1 can be decomposed into XORs using the following
constructions:

Lossy(a, b) = XOR(a, b, c) \ {c}
Sync(a, b) =

`
XOR(a, x, y) ◃▹ XOR(b, x, y)

´
\ {x, y}

Both automata consist only of a single state and hence,
model stateless connectors (cf. [4, 5]). The first step in the
decomposition process is a construction which shows that
every stateless connector can be constructed from XORs.
We consider two ways of composing XORs, which can be
depicted in a connector notation as in Figure 2.

•a

• b1

◦
x

• b2

• b3

!!!!
""

"" !!!!
""

""

a)

•a

◦
x

◦
y

• b
!!!!
""

""
""

""

!!!!

b)

Figure 2: Composing XORs.

In this notation, (binary) XORs are represented as !!"",
while hidden and normal ports are depicted by ◦ and •,
respectively. With the first kind of composition, depicted
in 2a), one can build n-ary XORs out of binary ones. Adding

XORs in this way splits a transition q
N∪{x}

!! q into two

transitions q
N∪{b2}

!! q and q
N∪{b3}

!! q . This essentially mod-
els the mutual exclusion of ports b2 and b3. In the following
we will use the notation XOR(a, B) for an n-ary XOR with
B = {b1, . . . , bn} a set of ports.

The second way of composing XORs is shown in 2b). This
construction uses the internal ports to synchronize the ex-
ternal ports. In this particular example, a and b can be
activated only together, either via x or y. The port automa-
ton coincides with the Sync(a, b), as mentioned above.

1370

b c

./qe qf

a

b

a b

se sf

b

c

A = (Q,N ,!,Q0)

Q set of states

N a set of ports N
! ✓ Q⇥ 2N ⇥Q a transition relation

Q0 ✓ Q a set of initial states

Examples I
�MP9�S(IVMC6PS

@DA�EPO6SPMT�HMP9�
HSPN�@CA�6P�@EA

a b

c

a b

c d

FC6C�HMP9T�HSPN�@CA�
6P�@DA����!�,H�
(,6+(S�@EA�PS�@FA�
+CW(�FC6C

Examples II
�;OE+SPO,T,OI�DCSS,(S
FC6C�HMP9T�@CA�],�@DA�
����
FC6C�HMP9T�@EA�],�@FA�

FC6C�HMP9T�HSPN�@CA�
COF�HSPN�@DA�6P�@[A��
CM6(SOC6,OI����(Y6SC�
T;OE+�EPOT6SC,O6T�

a b

c d

a z

b

.M6(SOC6PS

Examples III

FC6C�HMP9T�HSPN�@CA��@DA��
@EA��COF�@FA�6P�@[A��
CM6(SOC6,OI����(Y6SC�
T;OE+�EPOT6SC,O6T�

��.M6(SOC6PSa z

b

c

d

Examples IV

1C6C�HMP9T�HSPN�@CA�6P�@FA��@DA�6P�@(A��
COF�@EA�6P�@HA�CM6(SOC6,OI��(RV(OE(S

a

b

c f

e

d

•

Reo in mCRL2
a

b

c d
e

qL

cd

c

Lossy = (c|d + c).Lossy

qM

ac

bc
Merger = (a|c + b|c).Merger

Reo in mCRL2
a

b

c d
e

qM

ac

bc
./

qL

cd

c
./

qe qf

d

e

Conn = hide({c,d},
block({c1,c2,d1,d2} ,
comm({c1|c2 -> c, d1|d2 -> d},
Merger || Lossy || FIFO1)))

Can you prove?
0PMPVS,OIT�COF�2PS6�CV6PNC6C�2SPW,F(�(RV,WCM(O6�T(NCO6,ET

CT (C) – colouring table of C

col(q
P�! q0) – colouring associated

to a transition

A(C1) = (Q1,N1,!1, q0,1)

A(C2) = (Q2,N2,!2, q0,2)

(hq0,1, q0,2i
P�! hq1, q2i) 2 A(C1) ./ A(C2)

)

col(hq0,1, q0,2i
P�! hq1, q2i) 2 CT (C1) ./ CT (C2)

Can you prove?
(more generically)

0PMPVS,OIT�COF�2PS6�CV6PNC6C�2SPW,F(�(RV,WCM(O6�T(NCO6,ET

A = (Q,N ,!, {q0})

(q0
P�! q) 2 A(C)

)
col(P,N) 2 CT (C)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Automata labelled by

• a data constraint which represents a set of data assignments
to port names

g ::= true | dA = v | g1 _ g2 | ¬g

Note: other constraints, as

dA = dB
abv
= _d2Data(dA = d ^ dB = d) are derived.

• a name set which represents the set of port names at which io
can occur

States represent the configurations of the corresponding connector,
while transitions encode its maximally-parallel stepwise behavior.

Constraint Automata
Automata labelled by
• a data constraint which represents a set of data

assignments to port names

Note: other constraints, such as

are derived.

• a name set which represents the set of port names at
which IO can occur

States represent the configurations of the corresponding
connector, while transitions encode its maximally-parallel
stepwise behaviour.

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Automata labelled by

• a data constraint which represents a set of data assignments
to port names

g ::= true | dA = v | g1 _ g2 | ¬g

Note: other constraints, as

dA = dB
abv
= _d2Data(dA = d ^ dB = d) are derived.

• a name set which represents the set of port names at which io
can occur

States represent the configurations of the corresponding connector,
while transitions encode its maximally-parallel stepwise behavior.

Constraint Automata

2YCN2M(+�����)

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata

Example: Fifo1

�

�

�

�

�

�

���
������

���
������

�

���
�����	�

�

���
�����	�

Figure 11: Constraint automaton for a FIFO1 channel

Also it is used for Model checker tool [7], which checks properties like
deadlock-freeness and behavioral equivalence of connectors.

For Performance analysis Quantitative Intentional Automata are used. It
is an extension of Constraint Automata with quantitative properties, such as
arrival rates at ports and average delays of data-flows between ports.

6.4 Connector coloring

If we abstract away from which way the data flows and what transformations
are done on data, then the semantics of a Reo circuit become the set of all of its
dataflow alternatives. Where under “dataflow” we understand mapping of all
elements to set of two colors: solid line and dashed line (it means “data flowing”
and “no data flowing” respectively).

An example of all possible dataflows in Exclusive router connector is depicted
in Figure 12.

Figure 12: Possible data flow behaviour. The solid line marks the part of the
connector where data flows synchronously. In unmarked parts no data flows.

The CC model is also used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector.

7 Conclusion

In this paper we reviewed basic concepts of Reo coordination language. Basic
definitions were provided. Many examples of channels and connectors were also
reviewed so the reader gets an impression how easy it is to construct elements
with complex behavior in the Reo model. After the practical examples we also
looked very briefly at the main semantics models (ABT, Constraint automata

10

Constraint Automata -
Definition

A = (Q,N ,!,Q0)

Q set of states

N a set of ports N
Q0 ✓ Q a set of initial states

! ✓ Q⇥ 2N ⇥DC ⇥Q a transition relation such that

P,g��! iff

1. P 6= ;
2. g 2 DC(P,Data)

(DC(P,Data) is the set of data constraints over Data and P)

D(+CW,PVS�F(2(OFT�POM;�PO�PDT(SW(F�FC6C�
�OP6�PO�HV6VS(�(WPMV6,PO�

6SCOT,6,POT�H,S(�POM;�,H�FC6C�
PEEVST�C6�C��T(6�PH��2PS6T�:

Constraint Automata -
Definition

,O�EPOH,IVSC6,PO�T��2PS6T�,O�:�
ECO�2(SHPSN����P2(SC6,POT�9+,E+�
N((6�IVCSF�I�COF�M(CF�6P�T?

s
P,g��! s0 iff
1. P 6= ;
2. g 2 DC(P,Data)

Constraint Automata as
a semantics for Reo

• cannot capture context-awareness [Baier, Sirjani,
Arbab, Rutten 2006], but forms the basis for more
elaborated models (eg, Reo automata)

• captures all behaviour alternatives of a connector;
useful to generate a state-machine implementing
the connector’s behaviour

• basis for several tools, including the model
checker Vereofy [Kluppelholz, Baier 2007]

Constraint Automata -
Reo connectors

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Constraint automata as a semantics for Reo

Examples

4.2 Constraint automata for the basic channels

Figure 7 shows the constraint automata for some of the standard basic channel
types: synchronous channels with source A and sink B (or vice versa), (a)synchronous
drain with the sources A, B, (a)synchronous spout with the sinks A, B and lossy
synchronous channels with source A and sink B. In every case, one single state is
sufficient. Moreover, the automata are deterministic.

 {A,B}
 d_A = d_B

synchronous channel

 {A,B}

synchronous drain
or synchronous spout

 {A,B}
 d_A = d_B

lossy synchronous channel

{A}

 asynchronous drain
 or asynchronous spout

{A} {B}

Fig. 7. Deterministic constraint automata for some basic connectors

A constraint automaton for the FIFO1 channel was shown in Example 3.3. For
FIFO channels with capacity ≥ 2, similar constraint automata can be used. How-
ever, the number of states grows exponentially with the capacity. For instance, for a
FIFO2 channel with the data domain {0,1} we need 7 states representing the con-
figurations where the buffer is empty or the buffer contains one element (0 or 1)
or is full (00, 01, 10 or 11). For unbounded FIFO channels we even get constraint
automata with an infinite state space.

Of course, for compositional reasoning, we must assume that other user-defined
basic channel types are also specified by appropriate constraint automata.

4.3 Join: merge and product

As constraint automata do not distinguish between input ports (source nodes in
Reo) and output ports (sink nodes in Reo), we cannot expect a general join operator
on constraint automata that covers both the replicator semantics of joining source
nodes and the merge semantics of joining sink nodes.

Since we restrict our attention to (static) Reo-circuits, we may assume that a given
Reo-circuit is built out of some basic channels via the join and hiding operations

20

Parameterised
constraint automata

Back to software architecture Composition as coordination Introduction to Reo Examples Semantics Further examples

Parametrized constraint automata

States are parametric on data values ... therefore capturing
complex constraint automata emerging form data-dependencies

Example: 1 bounded FIFO

q(x)q_0

{A}
x := d_A

{B}
d_B=x

Fig. 13. Parameterized constraint automaton for a 1-bounded FIFO channel

Data}, Q0 = {q0}, N ames= {A,B} and the transitions

q0
{A},dA=d−−−−−→ q(d), q(d) {B},dB=d−−−−−→ q0

for any data item d ∈Data. Formally, to reason about data-dependent coordination
mechanisms, we define a parameterized constraint automaton as a tuple

P = (Loc,Var,v,N ames,�,Loc0, init)

where

• Loc is a set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Var a set of variables,
• v : Loc→ 2Var assigns to any location ℓ a (possibly empty) set of variables,
• init is a function that assigns to any initial location ℓ ∈ Loc0 a condition for the
variables.

v(ℓ) can be viewed as the parameter list of location ℓ. For instance, in Figure 13 we
use q(x) to denote that q is a location with parameter list v(q) = {x}, while q0 is a
location with an empty parameter list. The initial condition for q0 is omitted which
denotes that init(q0) = true.

The transition relation � of a parameterized constraint automaton is a (finite) set
of tuples (ℓ,N,h,X ,ℓ′), written in the form

ℓ
N,h�X ℓ̄.

Here,

• ℓ and ℓ̄ are locations.
• N is a non-empty name-set.
• h a (parameterized) data constraint for N, built out of atoms of the form “dA =
expr”. The expression expr is built from constants d ∈ Data, the symbols dB
for B ∈ N, variables x ∈ v(ℓ) and operators for the chosen data domain, e.g.,
boolean operator ∨, ∧, etc. for Data = {0,1} and arithmetic operators +, ∗,
etc. for Data= IN.

30

Composing constraint
automata

where the join operations are performed in an order such that any mixed node of
the final circuit arises through first joining certain sink nodes, and then, joining
the resulting node with certain source nodes. On the automata-level, the join of a
source node with another (sink, source or mixed) node will be realized by a product
construction, while joining sink nodes will be modeled with the help of a merger.

We first consider the join operation for node-pairs ⟨B, B̄⟩ where in each pair at most
one of the nodes is a sink or mixed node (while the other is a source node). In this
case, the effect of join is that all data flow at the nodes B and B̄ agree.

In the sequel, suppose that we are given two Reo-circuits with node-setsN1 andN2
for which we want to perform a join operation for node-pairs ⟨Bi, B̄i⟩ ∈ N1×N2,
i= 1, . . . ,k, where for any i at least one of nodes Bi or B̄i is a source node. We may
assume that the constraint automata A1 and A2 for both circuits have already been
constructed.

To simplify the notation, we assume that the names of the nodes are renamed in
such a way that B1 = B̄1, . . . ,Bk = B̄k and that the two circuits/automata do not
contain other common nodes. That is, we have to join all common nodes B ∈ N1∩
N2. On the language-level, join (under the above conditions) can be viewed as an
analogue to the natural join (denoted ◃▹) for relational data bases. For instance,
given two TDS-languages L1 = L1(A,B) and L2 = L2(B,C) 5 the TDS-language
(L1 ◃▹ L2)(A,B,C) is given by

L1 ◃▹ L2 =
{
(⟨α,a⟩,⟨β,b⟩,⟨γ,c⟩) : (⟨α,a⟩,⟨β,b⟩) ∈ L1 and (⟨β,b⟩,⟨γ,c⟩) ∈ L2

}
.

In a similar way, we may define the natural join for TDS-languages with other
name-sets. Thus, join as an operator for TDS-languages can be regarded as a gener-
alization of intersection. It is realized on the automata-level by a product-construction.

Definition 4.1 [Product-automaton] The product-automaton of the two constraint
automata A1 = (Q1,N ames1, −→1, Q0,1) and A2 = (Q2,N ames2,−→2,Q0,2), is:

A1 ◃▹ A2 = (Q1×Q2,N ames1∪N ames2,−→,Q0,1×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N ames2 = N2∩N ames1
⟨q1,q2⟩

N1∪N2,g1∧g2−−−−−−−→ ⟨p1, p2⟩

and
q1
N,g−→1 p1, N ∩N ames2 = /0

⟨q1,q2⟩
N,g−→ ⟨p1,q2⟩

and latter’s symmetric rule. !
5 The notation L(A,B) suggests that L is a TDS-language for the name-set N = {A,B}.

21

You are here

Formalism Synchr. Data Context Partial

Connector
Colouring CC2 - CC3 PCC

Automata Port
Automata

Constraint
Automata - -

Constraints ✓ ✓ ✓ ✓

1 2 3 4

(Process  
Algebra)

2 reasons for context

a
b

c

a
b

c

a
b

c

1 - avoid data loss
when the context
(FIFO) can receive
the data.

2 reasons for context

c

1 B

b

1A

!

1C
d

cb !

d

1 B1A

1C

cb !

d

1 B1A

1C

cb !

d

1 B0A

1C

2 - give priority
based on the
context (writer)

Context = 3 colours

• Colouring:

 End → {Flow, GiveReason,GetReason}

• Composition = matching colours:

Context = 3 colours
• Colouring:

 End → {Flow, GiveReason,GetReason}

• Composition = matching colours:

CT1 ./ CT2 =

{cl1 ./ cl2 | cl1 2 CT1, cl2 2 CT2, cl1 _ cl2}

End = {e1, . . . , en} [{e1, . . . , en}

cl1 _ cl2 = 8e1 2 dom(cl1) · 8e2dom(cl2)·
e1 = e2)
(cl1(e), cl2(e)) 2 {(,), (,), (,), }

cl1 ./ cl2 = cl1 [cl2

Composition

a
b

c

a
b

c

a
b

c

Priority with 3 colours

!

! !

!

Connector colouring 3

• Compositional – composition operation is
associative, commutative, and does not require
post-processing.

• Reasons for the absence of flow are propagated.

• Expresses priority.

• 2 colours ⇔ constraint automata (without data)

• 3 colours: + expressive (⇔ intentional automata)

Build a connector

Prod

connector

HCT6
�����

TMP9
�����

2S(H(S�HCT6�����

Build connectors

C��D��E��F��(��= C��E��(��=

C��D��E��=

F��(��H��=

C��F��D��(��E��H��=

C�D�E�F�(�=

T6P2

C��D��E��F�

Outline
1.Visual semantics for Reo

‣ Connector colouring (CC)1

2.Locality (concurrency)

‣ Partial connector colouring (PCC)2

3.Constraints

‣ SAT solving with data for Reo3
1 Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency
2 Dave Clarke and José Proença. Partial connector colouring
3 Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab, Channel-based coordination via constraint satisfaction
 José Proença, Dave Clarke, Interactive interaction constraints

Wr

Rd

complex connector

Locality (concurrency)

Motivation

• Connector colouring is not optimal for
distributed systems.

• All-or-nothing – all channels are needed
to decide where data goes.

• Need to identify local flows that are not
composed with the full connector.

• Model context dependency

Problems
• 2 colours (or constraint automata):

‣ assume primitives can make a no-flow step

• 3 colours:

‣ cannot assume primitives have a no-flow
colour – which direction would it be?

‣ Idea?: add another no-flow colour, without
direction, and assume all primitives have it...

Example

•
Rd

•
Rd

•
Rd

CC 2 CC 3

Partial CC

Synchronous regions
a

b

c f

e

d

•

Static regions:
boundaries

=
FIFO’s

•
Rd

Dynamic regions:
boundaries

=
GiveReason

Partial connector
colouring

• Colouring:

 End ⇀ {Flow, GiveReason,GetReason}

• Composition = matching colours:

In practice

i

o

A

B

Shall I search now
for a colouring?

